
738 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO 4, APRIL 1988

Analysis of Arbitrarily Shaped Two-Dimensional
Microwave Circuits by Finite-Difference

Time==Domain Method

WOJCIECH K. GWAREK

Abstract —The paper presents a version of the finite-difference time-

domain method adapted to the needs of S matrix calculations of micro-

wave two-dimensional circuits. The analysis is conducted by simulating the

wave propagation in the circnit terminated by matched loads and excited

by a matched pulse source. Various aspects of the method’s accuracy are

investigated. Practical compnter implementation of the method is discussed

and an example of its application to an arbitrarily shaped microstrip circnit

is presented. It is shown that the method in the proposed form is an

effective tool of circuit analysis in engineering applications. The method is

compared to two other methods used for a similar pnrpose, namely the

contour integral method and the transmission-line matrix method.

I. INTRODUCTION

A TWO-DIMENSIONAL circuit as understood here is

a circuit in which the fields may be characterized by

a scalar function V( x, y) which obeys a two-dimensional

wave equation

i)w(x,y,t)
v;,v(x, y,t)–p2

at2
=0 (1)

with proper boundary conditions.

There are many microwave circuits characterized accu-

rately or approximately by (l). As examples we suggest

stripline or microstrip junctions or resonators, and also

some types of waveguide discontinuities. That is why solv-

ing this equation was investigated by many researchers. If

the boundary is of complicated shape, only numerical

methods can be used. These methods can be divided into

two groups. The methods of the first group require a

certain amount of analytical preprocessing before the par-

ticular problem may be solved by a computer. As an

example we propose the Green’s function method sup-
ported by segmentation techniques [1]. Another group of

methods assumes that the analytical preprocessing should

be practically nonexistent and that it is up to the computer

to do the entire job. In this group we find the contour
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integral method [2], the transmission-line matrix method

[3], and the finite-difference method, which will be the

subject of this paper.

The finite-difference time-domain method (FD-TD) was

first introduced by Yee [4] and since then has been applied

by many authors. These applications, however, were con-

centrated in the domain of scattering [5], wave absorption

[17], and accelerator physics [6]. Application of the FD-TD

method to microwave circuit analysis has so far attracted

little attention.

The aim of this paper is to show that the FD-TD

method adapted to the needs of 2-D circuit analysis can be

a strong competitor to the other mentioned methods. It

can lead to a universal and effective computer program

capable of solving a wide range of practical problems. The

paper extends the ideas presented in [7] and [8]. It presents

an FD-TD method of 2-D circuit analysis based on pulse

excitation by a matched source. It discusses various aspects

of the method’s accuracy and presents the author’s experi-

ence with its implementation on an IBM PC AT computer.

11. OUTLINE OF THE FD-TD METHOD

In the FD-TD method instead of solving the second-

order equation (1) a pair of first-order equations is solved:

(3J(x, y,l)
v V(x, y,t) = –L$ at

dv(x, y,t)
V“.l(x, y,t) =-c, ~t

(2)

(3)

In microwave planar circuits, the variables and con-
stants in (2) and (3) have the following interpretations:

V—voltage, J— surface current density, C, —capacitance

of a unitary square of the circuit, L. —inductance of an

arbitrary square of the circuit. The xy plane is divided into

a set of meshes which are basically square but may have

their shapes modified to match the boundary line. The

coordinates of the middle of a mesh in the k th row and

the lth column are denoted by xl and y~. Replacing the

differentials in (2) and (3) by finite differences At and a
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yields

( At
=JX x[+:, y~, to–~

)

-( V(xl+a, y,, to)

‘( At
JY x,, y~+:, to+~

)

(4)

-( J’’(x,, y,+ a,to)- F’(x,, yk, to)) L ~f:;l ~,
,~,

(5)

~(xl>Y,k, to+ At)

(( At
=V(.x,, y~, to)– JX X1+:, y~, to+~

)

( At )( At
–JX x~–~,yk,to+~ +JY x~,yk+~,to+~

)

(
At )) At

–JY xl,y~–~,to+~
C,af,(l, k)

(6)

where fl(l, k), fz(l, k), and fg (1, k) are mesh shape func-

tions which are equal to unity for all square meshes (that

is, those inside the circuit) but adopt different values

(calculated by a boundary matching procedure like that of

[7]) for the meshes modified to match boundary lines.

Consecutive calculations of (4), (5), and (6) simulate the

process of the wave propagation in the circuit.

III. PROBLEMS OF FD-TD ANALYSIS OF

TWO-DIMENSIONAL CIRCUITS

A. Modeling of Matched Loads and Sources

The most convenient way of describing a microwave

linear circuit is by its S matrix. Since the FD-TD method

models the energy flow in the circuit it may be used to

compute the S matrix directly, provided that the matched

loads of the output lines are properly modeled in the

algorithm. Matching the source, although not absolutely

necessary, is highly desirable, since any reflections from

the input would prolong the transient response of the

circuit, thus prolonging, the computing time.
The absorbing boundary conditions have been investi-

gated in [14] and [15], but the procedures developed there

are not useful in our case. They cannot handle the situa-

tion of matched source and also, being designed for gen-

eral absorbing conditions, they are unnecessarily com-

~ ‘ :-‘~‘ ‘‘%Emi
Fig. 1. A uniform transmission line as a grid of meshes.

4

Fig. 2. Lumped circuit model of the line of Fig. 1.

plicated when applied to the case of normal incidence.

That is why a different approach will be used here.

Let us consider a model of a uniform transmission line

of length n = 20a and width w = 3a, where a is the mesh

size (Fig. 1). The lumped circuit model of this line corre-

sponding to the FD approximaticm is presented in Fig. 2.

Propagation inside the circuit is described by (4), (5), and

(6). The input and output matching is obtained by intro-

ducing in each of the rows of meshes at the input and

output the following operations:

~l(to+:)=~l(to-:)-(v,(’o)-vl(to‘7)

()V1(to+ At) =Vo(to+At)– I., to+ ~ Z. (8)

~n+l(to+:)=~n+l(to-: )-’(~+:o)’

– K+2(to))g (9)

At

()
Vn+2(to+ At) =In+l to+y Z.

where

(lo)

[

L L Atu
Z.= L’=~+L’’=—--——

z
L

2 2a~

C= C,a2 L= L,.

The meaning of the voltages and the currents used in

(7)-(10) is explained in Fig. 2. The additional inductance
L“ was introduced as a correction element to lower the

matching errors caused, by the fact that in the FD-TD

algorithm the voltage is defined at points of time and

space which are different from the points where the cur-

rent is defined. Because of this it is also necessary to
introduce some correction terms in the formulas for the S

matrix elements. Let us assume that Vo( a ), VI(u), . . . are

the complex amplitudes calculated by the Fourier transfor-

mation of Vo(t), Vi(t), . . = and ,rl(ti), 12(u), . . . are the

complex amplitudes calculated by the Fourier transforma-
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Fig. 3. Results of calculations of ISII [ versus a \A for the line of Fig. 1

with the speci~ correction (continuous line) and without it (dashed
line).

tion of 11(1 – At/2), Iz(t – At/2), . . . . Resolving the cir-

cuit equations at the input and output we obtain

(11)

Zin– Z. v~(u)
Sll =

Zin+ 20
with Zi~ = —.-J+ - jtiL” (12)

I,(a)

where @= tiAt/2.
Figs. 3 and 4 present the results of calculations of ISlll

and ISzl I versus frequency for the line of Fig. 1 with the

correction terms containing $ and L“ (continuous line)

and without them (dashed line). The frequency is char-

acterized by the mesh size to wavelength ratio a/A. It is

seen that when the corrections are applied, the errors of

matching drop to negligible values even for relatively high

a/A ratios.

Modeling of a matched source and a matched load was

introduced for a uniform transmission line. It can be

applied to an arbitrarily shaped circuit provided that at the
input and output the circuit includes segments of uniform

transmission lines long enough to ensure effective attenua-

tion of all the width modes except the dominant one.

B. Pulse Excitation

In the approach used in [7] the circuit with zero initial
values of V(x, y, t) and J(x, y, t) was excited by a

sinusoidal source of frequency u. The circuit’s parameters

at that frequency were obtained from the steady state

achieved in the circuit after a sufficiently long time. This

caused the time for computing a wide-band frequency

response to be very long.

Equations (4), (5), and (6) show that all the operations

in the FD-TD algorithm are linear. Thus it is possible to

use Fourier analysis to obtain the circuit’s frequency re-

sponse from the transient response. However, we need a

proof that this approach will not sacrifice the accuracy of

the method.
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Fig. 4. Results of calculations of \~21I versus a/A for the circuit of Fig.

1 with the speciaJ correction (continuous line) and without it (dashed

line).

Let us consider a relation between a voltage at the input,

V& and a voltage at the output, V1. We may write

~(t) =L(VO(t)) =L’(VO(t)) +AL(VO(t)) (13)

where L is a linear operator of the FD-TD algorithm. L‘ is

an operator of the transformation between input and out-

put of the original circuit, which is linear due to the

linearity of the Maxwell’s equations; and AL is an oper-

ator describing the error of the FD-TD method, which has

to be linear due to the linearity of the two former oper-

ators.

Let us write the Fourier transform of (13):

fi((,o) =T(0)VO(ti) =( T’(U) +AT(a))VO(Q) (14)

where VO(U), Vl(ti) are the Fourier transforms of Vo(t),

Vi(f) and T(o), T’(u), and AT(u) describe the operators

L, L’, and AL in the frequency domain. This yields

~(cd)
—=7’(ti) =T’(o)+ AT(u).
Vo(u)

(15)

Equation (15) suggests that for any particular frequency u,

the error of the FD-TD method does not depend on the

shape of the input signal and that the function VO(t ) may

be chosen to be the most convenient for use in the com-

puter algorithm. However, there is one aspect of the pulse

excitation which needs additional checking. The Fourier

transforms in (15) are assumed to be calculated in an
infinite period of time. The limited period of time assumed

in any computer calculation causes additional error. Thus

we must determine how much this error depends on the

shape of the source.

Let us consider two types of pulses. The first is a 8 pulse

which in the algorithm adopts the form

v,(t) =(: fort=O

fort= nAt; n=+l, +2,.,..
(16)

The second is a pulse of limited spectrum approximating a

8 pulse after passing through a bandpass filter of cutoff
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Fig. 5. \S1l I of the circuit of Fig. 1 calculated after 200 iterations; with

8-type excitation (dashed line) and with excitation of limited spectrum

(continuous line).

frequency w=:

Vo(t) =

2cJcAt/v fort=O

2 At sin(~Ct)
fort= rnAt; m=+l, ~2,

Irt *3, . . ..+M

(0 fort= mAt; lml>M

(17)

Fig. 5 shows the results of calculations of ISill of the

line of Fig. 1 after 200 iterations (t= 200At) with the two

types of excitation. The dashed line was obtained with S

type excitation, while the continuous line was obtained

with the excitation of limited spectrum (with tiC corre-

sponding to a/A = 0.2 and M = 50). When the computa-

tion is prolonged, the results obtained with the second type

of pulse change very little while the ripples on the curve

obtained with the 8 type of excitation decrease slowly, and

after about 1500 iterations the shape of the curve ap-

proaches the result obtained before with the second type of

pulse.

The reason for this effect is ‘that the FD approximation

produces some resonances above the investigated frequency

band. A 8 pulse excites the circuit at these frequencies and

produces a ringing-type response. Cutting off the high

frequencies from the exciting pulse eliminates the effect.

However, it should be noted that when the resonances of

the investigated circuit lie within the band of interest their

effect cannot be eliminated by changing the exciting pulse

spectrum. An example of such a circuit will be shown later

in this paper.

We may conclude that since using a 6 type of pulse

simplifies the algorithm and speeds it up (because the

Fourier transform of the source does not have to be

computed), it is a reasonable choice in many cases. How-

ever if we consider a relatively resonance free band and the

resonances are grouped outside that band, the time of

computing can be brought substantially down by applying

a pulse of the spectrum limited in such a way that the

unwanted resonances are not excited.

C. Microstrip Circuits Analysis

As was already shown in [7], the FD-TD method is

effective in arbitrarily shaped stripline circuit analysis. The

fringing fields were included in the calculations by assum-

i
1

1

1

I

i

1

Fig. 6. A microstnp ring circui{, as a grid of meshes.

ing that the circuit is bounded by a magnetic wall shifted

by some distance from the real edge of the circuit. For a

microstrip circuit a more complicated model is needed to

describe the complicated nature of the fringing fields. Here

is a proposal of such a model.

Let us consider a microstrip line of width w. This line is

characterized by its unit capacitance C(W), unit induc-

tance L(w), and effective permit tivity Ceff(w ) (with per-

meability p = p ~). Let us now imagine a line filled with a

uniform dielectric characterized by c’= const and p’=

;onst and having such properties that its unit capacitance

C’ and unit inductance L’ obey the relations

C’(W+AW)=C(W) (18)

L’(w+Aw+Aw’)=L(w), (19)

In many practical cases it is possible to find such values

of A w and A w‘ that (18) and (19) are obeyed with good

accuracy over a wide range of w. For example, for a

duroid substrate of ~ = 10cO and height k = 0.635 mm,

drawing the functions C(w) and L(w) from the closed-

form expressions for ZO and Ceff after [9] we find that (18)

and (19) are obeyed with 1 percent accuracy in the range

2h < w <lOh, assuming that Aw =1.05h, Aw’= h, c’=

10cO, and p’= 0.93p0. For wider strips the error of this

approximation rises only slightly. For very narrow strips it

is bigger but can be corrected by :tdopting for the edges of

these ~strips different values of AWI and A w’.

We will now apply the F~-TD method to the analysis of

a ring circuit already analyzed by another method by

DInzeo et al, [10], The circuit was built on the duroid

substrate, had the dimensions of rOUt= 7 mm, ri. = 4 mm,

and was connected to two 50 Q lines making a 90° angle.
For FD-TD calculations we assumed the circuit as pre-

sented in Fig. 6. Its dimensions were obtained by shifting

the circuit’s boundary by’ A w/2:= 0.525h and it was as-

sumed that ~’= 10cO and p’= 0.93p0. We applied the

boundary matching procedure described in [7] but took

into account additional inductance distributed along the
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Fig. 7. ISII I versus frequency of the circuit of Fig. 6.
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Fig. 9. Arg(,S21 ) versus frequency of the circuit of Fig.
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border. This corresponded to the inductance of a line of

width A w ‘/2 = 0.5h. The results of calculations of

ISIII, Itlzll, and Arg(Szl) are presented in Figs. 7, 8, and 9.

In the case of ISZII they are compared with the measure-

ments after [10]. The agreement is quite good. It has to be

stressed that the method presented here does not assume

f[GHz]
8 2 4 6 !3 10 f2--

Fig. 10. Error in calculations of lS1l I in Fig. 7 caused by a simulated

low accuracy of the computer arithmetics equal to 10-6.

any regularities of the circuit’s shape. Thus it is a method

for truly arbitrarily shaped circuits.

We may conclude that the presented example of the

FD-TD method application to an arbitrarily shaped micro-

strip circuit is encouraging, but more work has to be done

to check its value for various circuits, especially in the

higher frequency band, when dispersion becomes im-

portant.

In many programming languages there is a choice of the

precision of the floating point arithmetic and it is im-

portant to know which precision to choose to keep the

computer roundoff errors negligible while not boosting the

memory requirements and the computing time. To check

the level of the roundoff errors the calculations of the

circuit of Fig. 6 were repeated with a simulated low

computer precision of 10- ‘. The difference between the

results of IS’ll I obtained with full and with limited preci-

sion with d-type excitation are presented in Fig. 10. It is

seen that computer precision even as low as 10 – c intro-

duces negligible errors into FD-TD calculations. This and

other numerical experiments have shown that the error

level increases with decreasing a/A ratio (as seen in Fig.

10) and that it is slightly smaller for other than cl-type

excitations but these dependencies have negligible effect

due to generally low level of the roundoff errors. We may

draw the conclusion that the FD-TD method is very

resistant to roundoff errors and in most cases can be

applied even with the lowest (4 bytes) precision of the

floating point arithmetics used in personal computers.

E. Algorithm Implementation

The described problems of the FD-TD analysis were

checked with a Pascal program prepared for an IBM PC

AT computer. The program was written in a” user friendly”

manner under the assumption that it will serve a variety of

users.

As an example, the time needed in computing the S

matrix of the circuit of Fig. 6 was about 20 min. for 1000

iterations. The results presented in Figs. 7–9 were obtained

after 3000 iterations, but reasonably accurate results can

be obtained even after 1000 iterations. In this case the
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Fig. 11. IS21 ] of the circuit of Fig. 6 after 1000 iterations (dashed line)

and the same result after smoothing procedure using the criterion of

power conservation (continuous line).

functions obtained have some ripples (see, for example, the

dotted line in Fig. 11), but these ripples can be eliminated

using the criterion IS’ll 12+ ISZI12=1, valid for lossless cir-

cuits (see the continuous line in Fig. 11, which is practi-

cally the same as that of Fig. 7).

F. Comparison to Other Methods

As was mentioned in the introduction, the methods

which can be assigned to the same class as possible com-

petitors to the FD-TD method are the contour integral

(CI) method [2], [13] and the transmission-line matrix

(TLM) method [3], [11], [12].

In the contour integral method [2], the circuit’s boundary

is divided into a set of N elements of finite width. Using

the properties of cylindrical waves for a particular

frequency, we can obtain the relations between the volt-

ages at the elements. This leads to a set of N linear

equations to be solved.

When comparing the FD-TD and the CI methods we

have to note first that their domains of application are not

the same. The FD-TD method can be applied to circuits

filled with nonuniform media and also to circuits with

nonlinear elements (when restricted to sinusoidal excita-

tion). These two classes of circuits cannot be treated by the

CI method.

It is difficult to say which of the two methods needs less

computer time. There are three reasons for this.

1 ) It depends on the type of circuit. Many factors

contribute, for example,

● the computer time needed by the CI method depends

on the length of the boundary line while the time of

the FD-TD calculations depends on the surface of the

circuit;

● for some circuits greater advantage may be taken from

the flexibility of the CI method in applying varying

boundary elemeht length.

● the time of computing by the FD-TD method depends

on the presence of high-Q resonances in the circuit.

2) Specialized hardware and software can bring a

dramatic drop in computing time for either of the two

methods, but the gain obtained with particular computer

resources may be quite different for each of them.

3) In the CI method calculaticms are conducted for a

particular frequency and have to be repeated from the very

beginning when the circuit’s parameters are to be calcu-

lated for another frequency. On the contrary, in the FD-TD

method calculating the circuit’s parameters for several

hundred frequencies brings only a fractional increase in

the computing time with respect to one-frequency calcula-

tions.

As an example, the computing time by both methods

was compared for the circuit of Fig. 6 (but with no

additional inductance along the binder, a situation which

cannot be handled by the CI method) on an IBM PC AT

computer using standard library routines. In the time

needed for calculating the wide-band frequency character-

istics by the FD-TD method only a few (about five)

frequency points could be calculated by the CI method.

An important advantage of the FD-TD method is that

all algorithm operations have clear physical interpreta-

tions. That is why if a computing error occurs its cause can

be quite easily spotted. This is in contrast to calculations

by the CI method involving large-scale matrix operations

which are very difficult to control.
The FD-TD method and the Itransmission-line matrix

(TLM) method [3], [11] are similar in many respects. They

both use a net of square meshes and both consider a pulse

propagation in the net (although the algorithm of simulat-

ing the pulse propagation is different). Comparison of the

FD-TD and the TLM methods has been discussed in

recent publications [12], [16]. The general conclusion is

that those methods are developed in a parallel way. Pro-

gress in one of them triggers development of the other, For

example, to the author’s knowledge the TLM method was

not yet applied to S matrix calculations by modeling the

circuit with matched input and output, but taking into

account the discussion of this paper such an approach

seems straightforward. Although the author found that in

the considered application his version of the FD-TD

method is faster and more convenient than the versions of

the TLM known to him, he thinks of his work as a step

forward in developing the entire group of wave-simulating

methods, which includes the FD-TD and the TLM.

III. CONCLUSIONS

The paper has presented a vsrsion of the finite-dif-

ference time-domain method adapted to the needs of the S

matrix calculations of two-dimensional microwave circuits.

To allow direct S matrix calculations, matched loads and

matched sources were modeled in the algorithm. This

modeling gave good results over a wide frequency range

(covering mesh size to wavelength ratios 0< a/A < 0.1).

Pulse excitation was introduced in the method for fast

calculations of frequency-dependent circuit characteristics.

It was shown that the pulse excitation does not degrade

the FD-TD accuracy. Different types of pulses were

studied. In some cases a-&type pulse is the most practical

choice but in the cases when the circuit’s main resonances

are grouped outside the band of interest a pulse of limited
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spectrum can bring a substantial drop in the time of

computing.

It was shown that the FD-TD method is not sensitive to

the computer roundoff errors. Low precision of the float-

ing point numbers may be chosen in computer programs

to keep down the computer time and memory.

An ‘analysis of an arbitrarily shaped microstrip circuit

was presented as an example. Good agreement between

the results of calculations and measurements was obtained

but more work has to be done to check the applied

fringing fields models for various circuits.

Implementation of the described method on an IBM PC

AT computer shows that it can become a practical tool in

engineering applications. In many cases it performs better

than other widely used methods such as the contour in-

tegral method and the transmission-line matrix method.
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